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Abstract

Uber has recently been introducing novel practices in urban taxi transport. Journey
prices can change dynamically in almost real time and also vary geographically from
one area to another in a city, a strategy known as surge pricing. In this paper, we
explore the power of the new generation of open datasets towards understanding
the impact of the new disruption technologies that emerge in the area of public
transport. With our primary goal being a more transparent economic landscape for
urban commuters, we provide a direct price comparison between Uber and the
Yellow Cab company in New York. We discover that Uber, despite its lower standard
pricing rates, effectively charges higher fares on average, especially during short in
length, but frequent in occurrence, taxi journeys. Building on this insight, we develop
a smartphone application, OpenStreetCab, that offers a personalized consultation to
mobile users on which taxi provider is cheaper for their journey. Almost five months
after its launch, the app has attracted more than three thousand users in a single city.
Their journey queries have provided additional insights on the potential savings
similar technologies can have for urban commuters, with a highlight being that on
average, a user in New York saves 6 U.S. Dollars per taxi journey if they pick the
cheapest taxi provider. We run extensive experiments to show how Uber’s surge
pricing is the driving factor of higher journey prices and therefore higher potential
savings for our application’s users. Finally, motivated by the observation that Uber’s
surge pricing is occurring more frequently that intuitively expected, we formulate a
prediction task where the aim becomes to predict a geographic area’s tendency to
surge. Using exogenous to Uber data, in particular Yellow Cab and Foursquare data,
we show how it is possible to estimate customer demand within an area, and by
extension surge pricing, with high accuracy.

1 Introduction

The arrival of Uber [1] and its growing popularity have introduced an unprecedented
change in the nature of taxi transportation: Pricing patterns can now change in every com-
ing minute, driven by algorithmic recipes based on offer and demand put forward by the
company. In addition, recent empirical findings [2] demonstrated that Uber’s changes in
pricing, a tactic popularly known as surge pricing, can vary from one neighborhood to the
next one in a city. This situation translates into an extremely volatile pricing landscape
in taxi transport, with prices changing in real time in a manner that is hard to predict or
trace. Moreover, the precise working of pricing algorithms is neither known to the pub-
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lic nor to authorities. As a result, the a-priori knowledge and transparency on pricing in
urban transport, which has been a norm for decades, is effectively lost.

In recent years, data mining research has focused primarily on the mining of spatial
trajectories for the development of routing, navigation and mapping applications [3-5].
While taxi spatial trajectory data has also been exploited heavily in this context [6-8],
there is only little work on the mining of taxi mobility data in the light of other layers
of data and in particular those that can provide valuable information on the economic
costs of taxi journeys. This could be attributed to the relatively stable prices in the taxi
industry for years now, but also to the existence of clear rules determining the price of
a trip based on its duration and distance. The case of Uber as a game changer in urban
transport economics has motivated us to consider taxi mobility data from an economical
point of view, in order to estimate and compare the financial costs incurred by customers
of different taxi providers. Our goal here is set to answer a number of research questions
that concern the relationship between taxi mobility patterns and the financial impact of
those through the comparison of taxi providers over time and across space.

En route to this goal, whose achievement is a first step to restore transparency for com-
muters in taxi transport, we make the following contributions in the present paper.

« First, we leverage on a large, free and open dataset of yellow taxi cab mobility records
in New York City to characterize their mobility and pricing patterns. We report that
pricing directly relates to well known patterns observed in the past on human urban
mobility. Most taxi movements are within a short distance range with longer
movements occurring less frequently in the data. Further, the overall distribution of
spatial movements directly matches the statistical distribution of the taxi fares paid by
customers. This observation is due to the inherent relationship between the
magnitude of mobility trajectories and their financial or energy costs. Next, we
provide a head to head comparison of two taxi providers competing in New York City:
Yellow Cabs and Uber’s cheapest service, Uber X. We note that, while the statistical
distributions of prices charged between the two companies follows a similar pattern,
Uber X appears to be consistently more expensive on average. In particular, Uber
takes effectively advantage of trends in human mobility patterns, charging more for
short trips and thus maintaining a higher revenue margin (Section 2).

+ We take a step further and build a mobile application, OpenStreetCab,® that allows
users to query the origin (pick up) and destination (taxi drop off) locations of their
journey. The more than three thousand users that have used the application in New
York city have generated thousands of mobility and pricing datapoints that have
allowed us to perform an additional data mining step that reveals the large potential
benefits of big open datasets in the context of urban transport. Specifically, taxi
commuters that use the app save on average an estimated amount of 6 U.S. Dollars
per journey. A deeper inspection of the data demonstrates that savings, as driven by
the surge pricing patterns imposed by Uber, can vary significantly by the hour of the
week and by user location (Sections 3 and 4).

« While the findings initially appear to be in contradiction with the standard pricing
reported by Uber, we discover that higher prices - compared to the publicly stated
base fares - are being charged very frequently (almost one in four times). For this
reason, the effective price incurred on taxi customers is higher than the stated and
expected minimum. We perform two controlled experiments aiming to reverse
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engineer the surge pricing tactics of Uber. We show that surge pricing is enabled very

frequently, with per minute sensitivity, based on supply and demand balance at the

origin and also, possibly, at destination. Moreover, we demonstrate that surge pricing

has spatial structure and we exploit Yellow Cab and Foursquare data to predict

demand at an area of a city, and by extension its tendency to surge (Section 5).
Overall, our work shows how the combination of open datasets and data generated by mo-
bile applications can allow researchers and practitioners alike to understand complex phe-
nomena in the urban domain. The rest of the paper is structured as follows. In Section 2
we analyse the taxi mobility and fares datasets, where we provide a direct comparison be-
tween Uber X and Yellow Cabs. In Section 3 we describe our application, OpenStreetCab,
that leverages on these datasets to help commuters choose the cheapest taxi provider for
their journey. In Section 4, we perform an analysis on the data yielded by the app focusing
on the savings made by mobile users, whereas in Section 5 we describe the surge pric-
ing mechanics of Uber. Finally, we close with related works (Section 6) and concluding
remarks (Section 7).

2 Analysis

In this section we provide an overview of the dataset describing taxi mobility and fares
charged in New York. We then evaluate the prices that Uber X would charge for trips
sampled from the dataset and compare them with those charged by Yellow Cabs, consid-
ering aggregate, temporal and spatial comparative perspectives.

2.1 The New York City taxi dataset

The Freedom of Information Law in the United States encourages public authorities to
release their data where appropriate to the benefit of the citizens. In 2014, the law was
exploited by Chris Whong to acquire and post on the web one of the most comprehensive
taxi mobility datasets available today. The dataset describes taxi journeys in New York City
during the full course of 2013, and informs us not only on the origin and destination points
of taxi trips in terms of geographic latitude and longitude coordinates, but also on the
financial costs for the customer (trip fare paid including information on tip amount and
payment method). This mobility dataset, downloadable here [9], counts 11 GB of mobility
data representing almost 170 million trips and 7.7 GB of the associated fare data. Traces
generated by the data can be seen in Figure 1, where we have drawn a black point for every
pick up and drop off point of a taxi journey considering a 1% sample during January 2013
in the data.

2.2 Comparing prices between taxi providers
In August 2014, Uber opened up an API with access to valuable information about its
services. This occasion allowed us to perform a first head to head comparative analysis of
prices between Uber and yellow taxis in New York City. To achieve this, we have run the
following experiment during a 10 day time window in September 2014:
1. For a sample of 600K trips in New York in the yellow taxi dataset, record the
geographic coordinates (latitude and longitude) of the pick up and drop off points.
2. Retrieve the total fare paid by the customer for the trip (tip amount included).
3. Query Uber’s API on the corresponding endpoint and ask how much they would
charge for the same trip (same pick up and drop off points), considering the
cheapest version of the service, Uber X.
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Figure 1 Marking the traces of New York City yellow taxis. For every pick up and drop off pointin a
uniform sample of the data we draw a black point.

Figure 2 Distribution of prices per journey for 0.30

isi i [ Yellow Taxis
Uber X and yellow taxis in New York City. 3025 Y
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4. Uber’s API returns a value range indicating the minimum and maximum price

estimate. We take the mean of the two values.

5.  We then compare the prices between the two services and retrieve their difference.

As can be observed in Figure 2 where the distribution of prices for the two services is
shown, despite their qualitative similarity, yellow taxis appear cheaper than Uber X, with
a median difference between the two distributions of 1.4. Note the spike that appears for
the case of Uber X indicating the minimum fare of 8 U.S. Dollars applied by the company
in New York City, ® when the minimum for Yellow Cabs is 2.5.¢ For a more thorough in-
spection of the prices charged by the two taxi providers in Figure 3 we plot the Cumulative
Distribution Function (CFD) of the two distributions.

In Figure 4, we compare Uber and Yellow Cabs from another perspective: for every ob-
served yellow taxi price, we show the mean Uber X price (one standard deviation noted
through the error bars). If the two taxi service providers cost the same for every trip, then
a balanced relationship would be found on the x = y axis. However, Uber appears consis-
tently more expensive for prices below 35 U.S. Dollars, becoming cheaper only above that
threshold. As one would expect, the cheaper journeys are those that are in principle of
shorter range. In fact, according to observations made on a variety of empirical data in
the past, human mobility tends to be characterised by a vast majority of short trips [10,
11], with a few, occasional very long ones. This observation suggests that Uber’s economic
model effectively exploits this trend of human mobility in order to maximise revenues. We
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empirically confirm this hypothesis noting the skewed frequency distribution of move-
ment distances in the present context by visualising it in Figure 5, where we measure a
mean distance for a yellow taxi trip in New York equal to 2.09 kilometers. The percentage
of yellow taxi journeys that cost less than 35 U.S. Dollars is almost 94%.

In Figure 6, we put a geographic perspective on the comparison of the two taxi compa-
nies. We split New York City in a set of grid areas (100 x 100 meters). Considering then
the set of all out-going trips from an origin area, we paint a given area yellow if most trips
were cheaper when taking a Yellow Cab. Instead, an area is painted black if Uber is cheaper
by trip majority. One notes how the Manhattan area is typically cheaper for yellow taxis,
confirming this area as an economic stronghold of the company,? whereas Uber is cheaper
with higher frequency in the peripheral parts of the city. Since Uber considers the balance
between driver supply and customer demand as factors to determine pricing [12], it may
be a plausible hypothesis that prices will be in general higher where there is high demand -
that is the center of the city where population density surges - and at the same time where

there is low driver supply. Supply may be prone to a geographic bias due to spatial varia-
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Figure 6 Geographic comparison between Uber and yellow taxi prices. We paint an area black if Uber is
cheaper by trip majority and yellow otherwise.

tions in resident demographics. Most Uber drivers may not reside in the very expensive
Manhattan area and for this reason this area is likely to be more prone to surge pricing.

The above experiment may involve a number of biases and limitations which we refer to
here. The NYC yellow taxi data corresponded to year 2013 whereas our API requests for
Uber X prices were made in September 2014. However, one should note that the prices for
yellow taxis in the city had last changed in 2012 after 8 years [13]. For this reason, prices
in 2013 are expected to offer a good approximation of today’s prices as, to the best of our
knowledge, there has been no increase since 2012. Further, there was no control for time
of the day/week for the API query, an additional dimension which should be incorporated
when available. In particular, temporal information is expected to help predict variations
of traffic, but also of offer and demand, and therefore of prices. Let us note, however, that
surge pricing does not seem to be purely periodic, in terms of daily or weekly cycles, as we
show in Section 5. As more and more data is acquired, this temporal information could
be incorporated into the analysis. Preliminary analysis shows that repeating the same ex-
periment at different time windows yields only minor changes in the numerical estimates
presented above.

Overall, we argue that the comparison of two different companies providing the same
service in the same geographic area is valuable to commuters. Just as consumers have had
open access to airfares for a long time now, allowing for transparency in a competitive
market, we believe that similar approaches could benefit commuters in modern cities. For
this reason, we design a mobile application that realizes this vision, as described in the

next section.
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3 OpenStreetCab: a mobile app for cheap taxi fare discovery

In recent years, mobile applications have often been used as a source of data. Smartphones
are pervasive devices following users through their daily activities, sensing their where-
abouts and context. The corresponding data has fueled a number of studies, and led to
the improvement and creation of many real world applications. Our analysis in the pre-
vious section shows that the price of a journey can significantly vary from one provider
to another, and that this variation is associated to the duration of the trips, as well as on
where they take place. Motivated by these observations we have taken a step forward by
designing and launching a mobile application, OpenStreetCab, whose aim is to help users
reduce commuting costs by taxi. This is achieved by helping users chose the cheapest taxi
provider depending on the parameters of their journey. In this section, we first summarise
the ideas behind the design and functionality of the application. Next we show how the
dataset generated through the app can also yield valuable insight on taxi economics, fo-

cusing on savings made by mobile users.

3.1 Application logic and functionality
Figure 7 shows three snapshots of the Android version of the app (iOS one is available as
well). Users can provide as input their pick up (origin) and drop off (destination) locations.
After clicking on the button Uber or Yellow Cab?, the query input is pushed to a server
where Uber and yellow taxi prices are compared. If Uber X is found to be cheaper, on
average, for the selected trip a black screen is shown on the phone of the user with the
message Take Uber. Otherwise, if a Yellow Cab is cheaper for that journey, the screen
becomes yellow with the message Take a Yellow Cab. Minimalism in design is central to
provide the user with an answer with a minimum cost in terms of actions.

The decision of whether Uber X or Yellow Cab is cheaper is the most critical part of the
application. We now describe how we use data from yellow taxi and Uber in New York
(as discussed in Section 2) and Uber, and how the decision-making algorithm behind the

service is built.

A \EA L RN PIw4L252 U@

I' TAXI

Trip origin
= In NY

where to go Take a Yellow cab Take Uber

& in NY

Figure 7 A user perspective of OpenStreetCab. As shown in the snapshots above users can set their trip
and destination address as they open the application. By pressing a button they receive a consultation on the
cheapest taxi provider for their trip.
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1. First, we apply a grid on top of New York’s geographic landscape. Its size is 400 by
400 number of cells, and each cell has size 30 meters x 30 meters.

2. The origin and destination input by the user are geo-coded to latitude and
longitude geographic coordinates.

3. The coordinates are subsequently matched to their corresponding grid cells,
denoted by O for the origin and D for the destination.

4. We calculate the Yellow Cab price, by taking the mean price across all journeys
starting in the origin cell O and finishing in the destination cell D. The tip is taken
into account in the price.

5.  We query the Uber API in real time with, as an input, the geo-coded origin and
destination addresses provided by the user. Uber returns a [min, max] estimate for
Uber X and we consider its mean as the price of the trip.

6. We compare Uber X against the Yellow Cab price and declare as winner the
cheapest provider.

With regard to step 4, a crucial aspect was to find the right level of granularity, not too
coarse to avoid washing out useful signals, nor too narrow to avoid having a limited num-
ber of occurrences for the trips selected by the user. For instance, we have considered the
possibility to stratify the historic journeys of Yellow Cabs by time. At different hours of the
week, Yellow Cab prices may change due to difference in traffic conditions or commuting
patterns. External phenomena such as weather conditions or large events can also have
an effect on the duration of a taxi journey. However, stratifying by time leads to less data
per area and, as a consequence, worse estimates. For this reason, we have opted for a sim-
ple averaging of the prices for journeys that falls between the origin and destination cells.
We have instead kept the cell size as small as possible, to 0.0009 km? (30 m x 30 m), to
emulate the size of a small block in the city and be as precise as possible geographically.

4 Analysis of potential savings
4.1 Basic data properties and analysis
OpenStreetCab was launched in March 2015 and in less than three months has been in-
stalled by more than 4.5K iPhone and Android users only in New York. In the latest app
version, users are not only informed of the cheapest taxi provider for their journey, but
also how much they would save in U.S. Dollars with the optimal choice. At least 3.5K
users have used the app at least once with the total number of queries being around 6.0K.
The average number of queries per user is 3.3.

In Figure 8 we plot the Cumulative Distribution Function (CDF) of user query frequen-
cies. The CDF follows a fat-tailed distribution with the majority of users having queried

Figure 8 Cumulative Distribution Function of 100 !
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Figure 9 User query frequency in terms of weekly temporal evolution patterns.
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the application only a few times and a few active users having used the app several times.
10% of users have used the app more than 7 or 8 times, and a few handful of them (1-2%)
have queried the app more than 15 times so far. The usage statistics present an expected
long tail, as observed in a variety of social datasets, including the number of phone calls
placed by a person and, therefore, its number of geographic localisation in Call Detail
Records data [10].

In Figure 9 we plot the weekly frequency of travel queries made to the app. The primary
observation lies on the fact that Tuesday to Saturday are the most active days in terms
of user engagement. Secondly, during the interval of a day (24 hours), we observe two
characteristic peaks: a sudden rise in activity in the morning corresponding to early day
commuters and a second one late in the evening when people return home. Note that our
user base is inherently formed by Uber users in New York. Figure 10 shows the 24-hour
frequency distribution of queries, averaging across all days, and confirms these observa-

tions.

4.2 User savings on taxi transport

Let us now estimate the savings generated by our app. Considering 10,873 travel queries in
total, we iterate through the full set of query records and measure how much a user saves
by taking the absolute difference in the prices between the two taxi providers. Formally
for a queried journey i, we note the price difference, At; equal to Yellow(t;) — Uber(t)).

In Figure 11 we plot the histogram of At considering all journeys. A difference of 0
indicates that, based on our estimations, the two providers charge the same amount for
the journey requested by the user. The distribution is centered around zero, but it exhibits
a large variance, which translates into substantial potential savings for the users. We have
measured an average saving per journey equal to 6.05 U.S. Dollars. This number should
be put in perspective with the observation that most trips fall in the cost range (7-15) U.S.
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Figure 12 A snapshot of 168 hours in a week, coloured yellow or black depending on whether a
Yellow Cab or an Uber offered the lowest price.

Dollars, thereby indicating that important savings could be made by properly estimating
and comparing the prices of competing operators.

Does when help choosing the cheapest taxi provider in the city? In Figure 12, each hour of
the week has been coloured in a yellow or black stripe, depending on whether the majority
of Uber or Yellow Cabs rides were cheaper for the hour in question. The visualization
suggests that the time of the week can play a significant role in pricing. Interestingly, this
temporal pattern is not purely periodic, as it depends on variations in traffic and on Uber’s
pricing model, itself depending dynamically on driver supply and customer demand. This
preliminary observation, which demands further analysis, shows that, depending on the
time of the week, it could be beneficial to pick one provider or another.

Finally, to provide a deeper insight on how different taxi pick-up strategies can be more
or less financially beneficial for a user, we consider the following experiment. Running
through all travel queries in the app’s database we measure the cost ¢; of a trip i when
using a given pick up strategy j. We consider four pick up strategies as described below:

1. Application-driven: The user always takes the cheapest provider according to the

output provided by OpenStreetCab.

2. Always Yellow Cab: The user always picks a Yellow Cab ignoring the app’s output.

3. Always Uber X: The user always picks a Uber X driver for their journey.

4. Random Pick Up: The user picks a taxi provider at random.

In Figure 13 we show the average savings obtained for each of the strategies defined
above. The application-driven strategy suggests a mean price of 18.5 U.S. Dollars, when
the next optimal strategy appears to be the one that always suggests taking a Yellow Cab
(19.5). Interestingly, taking Uber always is worse even than a random pick up strategy.
This contradicts the low cost image advertised by Uber based on their own ratings,® in
part because of the large prevalence of short trips where Yellow Cabs was shown to be
advantageous, but also because of the so-called surge pricing. For this reason, we explore

in the next section the spatial and dynamical properties of Uber’s pricing strategy.
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Figure 14 Price evolution temporal dynamics for a set of 800 routes that where sampled uniformly
random by our app’s set of requested routes. The price of each route has been queried once every hour
for a week in April 2015.

5 Surge pricing

The analysis in the previous sections shows how Uber introduces a new economic
paradigm in the area of urban transport. The spearhead of this transformation is the surge
pricing tactics enforced by the algorithmic recipes of the company. As we have observed
already, taxi journey prices can vary in real time and from one neighborhood to another.
Moreover the variations can have significant implications on the costs incurred on trav-
ellers. Motivated by these observations we consider the following questions in this section:
First, How does surge pricing manifest in the city over time and space? and second, Can we
exploit different data sources to predict Uber’s surge pricing patterns?

5.1 Surge pricing patterns
In Figure 14 we plot the temporal variation of prices for a sample of 800 routes queried
by our app’s users. Each drawn curve corresponds to the price of a route over time, with
the price noted on the y-axis. We have used a sampling interval to query price of 1 hour,
querying for a period of a week. Let us also call base price the minimum fare charged for
a route by the standard Uber pricing (UberX in NYC is $2.15 mile + 40 cents/minute).
There are a few key observations to be highlighted here. First, the price value of a sin-
gle route can vary significantly over time. Considering a 168-hour window of observation
(1 week), routes may surge frequently, typically three or four times a day, with surge periods
lastings sometimes a few hours. Sometimes route prices can increase significantly in ab-
solute value, an increase than can even be in the order of tens of U.S. Dollars, with respect
to the minimum base price. Second, the temporal dynamics of the route prices appear to
be correlated, but not automatically, as one observes many times when some routes surge
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Figure 15 Route surge multipliers during the course of a week.

and others are in the base price. This observation is expected, as routes originate from dif-
ferent areas, each characterized by different driver supply and customer demand patterns
and, as a consequence, different surge patterns.

Surge pricing proceeds by multiplying the baseline price depending on offer and de-

mand. For this reason, we show in Figure 15 how the price multiplier of a route evolves

price(i,t)

base_price(i)’ where

in time. Formally, we define the surge multiplier of a route at time ¢ as
price(i, t) is the Uber X cost of route i during time ¢ and base_price(i) its base price.

A value of 1 indicates a base price. One observes several spikes on the curves represent-
ing the different routes, with the frequent presence of large multiplier values. This pat-
tern confirms the observations made in Figure 14. Note that in the window of observation
(a weekly time window in May 2015) and for the routes considered for this experiment, the
multipliers are capped under a x3 multiplier. This cap is the reflect of the price control
designed by the company. While capping is a common practice in many modern trans-
portation systems [14], in the case of Uber it seems to be a company induced policy, and
not an external control applied by local regulatory authorities. Capping in this case may
have been enabled due to cases of extreme charges on Uber customers reported publicly
in the past [15].

So far, the most counter intuitive observation regarding Uber’s pricing tactics, is that
surge is not a rare event. While we have no measure of how many journeys are actually
purchased through Uber at a surge price, we can exploit the usage statistics of our app,
alongside the surge patterns of the corresponding routes to provide an estimate. To do so,
we exploit the usage frequency statistics shown in Figure 9. The frequency of user queries
is a proxy to the trips purchased in a given hour, noted here as P; for hours t € 1,..., T,
where T = 168. For a given route i, we note whether at a given hour ¢, it has been on
surge or not. For example, given a route i and an hour ¢, we can generate a time series
S of binary values s;;, where s;; = 1 if the route is priced at surge in that hour, or s; = 0
otherwise. Through a simple multiplication of the two time series P and S, considering
the set of all N routes, we can estimate the fraction of trips purchased at surge, ST, in the

following manner:

N T
Dic1 D Sit X Pt. o

ST = -
N x Zt:lpt
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Considering a sample of 800 routes in New York City and pricing data from a week
in May 2015, we have noted that more than 1 in 4 Uber X trips are purchased at a price
higher than the standard base price. Of course, this is an indicative figure and corresponds
to a simplification of a complex reality. The main assumption is that the time evolution
of the number of trips purchased, modeled by P, is the same over different areas in the
city. Further, numbers may vary across different time windows either because the supply-

demand balance drifts over time, or because Uber changes its surge pricing algorithm.

5.2 A surge pricing experiment

The observations made in the previous section are instructive, but they do not provide an
explanation for the underlying mechanics driving surge pricing. As discussed in Section 2,
Uber’s pricing model is known to be based on supply and demand balance [12]. It is un-
clear, however, if demand is evaluated only at origin, or instead if a more complex recipe,
incorporating perhaps the overall demand dynamics in the city, is considered.

In order to understand this mechanism, we perform the following experiment. For a
given origin O in the center of New York (Times Square) we query the Uber API for routes
that originate in O, and ending in different geographic endpoints sampled randomly. If
surge pricing was to depend only on demand, the tested routes would be in pure tempo-
ral synchronicity. In Figure 16 we show the price evolution of a sample of 5 routes. Our
queries were performed at a high frequency of % queries/sec, to allow for the collection
of finer time series. The results demonstrate that surge pricing strongly depends on the
origin point. Considering all possible pairs of routes we have measured a mean correla-
tion between their time series equal to Pearson’s r = 0.96. Despite the correlation of prices
across time, however, we have also observed minor discrepancies. Those could be due to
either delays in server responses from Uber’s API, or instead to other factors, for instance
variations in demand in other regions of the city.

To test the latter hypothesis, we perform a similar experiment but with the control point
reversed. That is we test variations in prices among routes that start at different origin
points O, but end at the same destination D. In Figure 17 we observe that the price evolu-
tion also present correlations, but to a lesser extent than those of Figure 16. In this case,
the mean correlation value between all time series pairs was equal to a Pearson’s r = 0.57.
This result is either due to the existence of spatial correlations of offer and demand across
the city, or to the incorporation of data at the destination in order to determine the price
of a trip. From an economic perspective, the latter hypothesis is understandable, as Uber
would benefit from having their drivers move to areas with a high demand.
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Figure 17 Surge experiment where we control 4.0
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5.3 Geographic hierarchy of surge pricing

Surge pricing depends on variations of the service’s demand on the side of users and sup-
ply on the side of the drivers. Uber’s application permissions allows for access to location
information about their users in real time, and it is thus likely that their model to estimate
is based on this information. In addition, it is well-known in the urban research litera-
ture that population density exhibits heterogeneous geographic distribution patterns [16],
typically reflecting a more densely populated urban core and a more sparsely populated
periphery.

In this context, predicting the exact time series of route prices may be a challenging pre-
diction task. Yet, if we assume that different areas in the city are characterised by different
population densities, user demand is expected to be distributed similarly. We explore this
possibility in Figure 18, where we visualize the spatial distribution of surge pricing mul-
tipliers over different areas in the city where the users of our application have travelled.

Formally the average surge multiplier of a route i is the mean of all its price evaluations

over time:
T _price(it)
AverageSurgeMultiplier = Z Dase price() (2)
t=1 r

Then the mean surge of an area is measured by taking into account the AverageSurgeMulti-
plier values for all routes that leave a given cell area (i.e., the cell is origin for these routes).

A visual inspection supports the idea that indeed more central and dense areas are more
prone to surge, associated to a higher average multiplier. An analytical viewpoint on the
distribution of the numerical values of mean area surge is provided through Figure 19
where a frequency histogram is shown. Most areas in the periphery of the city have an
average surge multiplier equal to 1.0, but there is a considerable percentage, almost 70%
which has a higher multiplier. Our goal next is to predict those areas that are more likely

to be prone to surge pricing.

5.4 Predicting surge pricing

Finally, we investigate whether demand can be estimated by combining different datasets,
without using Uber information subject to API limitations. In particular, our aim is to
predict surge multipliers in different areas, and therefore the surge hierarchy in urban
neighborhoods in New York. We reduce this problem to a ranking task where our goal

is to rank areas from higher to lower surge values. To do so, we need to estimate local
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demand and local offer, but we will only focus on the former, as we have no information
about the residence of Uber drivers nor about their whereabouts. For this reason, we make
the assumption that driver supply is uniform in the city.

To estimate demand, we combine two different datasets. First, we use the yellow taxi
dataset described above, where the number of trips per geographic area can be recorded.
The yellow taxi user base of course may not be the same as Uber’s, but given the compe-
tition between the two companies, an overlap is expected. Secondly, we import a dataset
from Foursquare and in particular the venues and check-ins of the location-based service
in New York city during 2011. This data provides us estimates of urban place and popula-
tion density but also the number of transportation hubs, as the latter are expected to be

popular destinations for taxis. The dataset signals are combined with a supervised learn-
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ing model, that is a Decision Tree Regressor [17], where we have set a maximum tree depth
equal to 3 and trained and tested using the Leave-One-Out Error [18] technique which has
been theoretically shown to be an unbiased estimator of generalisation error. A label of an
area, y;, used in the training set is the surge multiplier of it, whereas the feature based
representations where set with each different data signal corresponding to a different di-
mension in the training vector x;. Then the supervised learning model is trained to learn
a function f such as that f(x;) for an area i is as close as possible to the real valued surge
multiplier of the area, y;.

Results: In Table 1, we present the Pearson’s correlation r between the average surge pric-
ing multiplier observed in the 840 areas visualised in Figure 18, the four datasets used to
estimate Uber X demand, and the supervised learning model. Among individual signals,
the correlation is highest with the frequency of Yellow Cab trips (r = 0.43). The number
of Foursquare Places is second with a score r = 0.42. However, the best score is, by far, ob-
tained with the Decision Tree (r = 0.59). This result is impressive given that we measure
correlations between variables collected from distinct technological systems. Note also
that despite its low correlation (r = 0.10), the incorporation of the frequency of Foursquare
travel spots as a feature in the supervised learning model has helped to improve perfor-
mance. Finally, we assess the efficacy of the decision tree regressor in the light of a different

metric, namely Mean Squared Error (MSE) defined as:
MSE= Xn:@ —y)? 3)
" R

where # is the number of datapoints in the test set, and y;, y; are the predicted by the
model and real surge values respectively. The scores are shown in Table 2, where we see a
similar picture in terms of the performance of the different models. In each case we have
trained the Decision Tree regressor with the corresponding input signal that defines our
input vector x;, whereas in the final case we have combined all signals in the supervised

learning model.

Table 1 Pearson’s r correlation

Feature Pearson’s r p-value
Yellow Cab trips 043 2.00 x E-38
Foursquare Places 042 7.51 x E-38
Foursquare check-ins 0.35 6.66 x E-26
Foursquare travel spots 0.10 1% 1072
Decision Tree Regressor 0.59 7.92 x E-84

Table 2 Mean Squared Error scores in Decision Tree learning

Feature MSE

Yellow Cab trips 355 % 107
Foursquare Places 416 x 107
Foursquare check-ins 412 %107
Foursquare travel spots 519 x 107

All features 332 x 107
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6 Related works

This paper is at the border between several disciplines related to urban data science, in-
cluding urban data mining, spatial economics and mobility studies on taxi datasets. Urban
data mining has been gaining traction in recent years due to the increasing availability of
datasets, and to strategic decisions of many urban authorities to realize the vision of smart
cities. Related to this work, a popular idea is to analyze activity in urban transportation
systems to estimate commuter costs and propose data mining methods to reduce them
[19-21]. Mining data becoming publically available through sharing bicycle transporta-
tion schemes has been another common line of research [22—-24]. More generally, data
from social media has been mined to digitally represent and model various aspects of
urban reality [25], whereas telecom and location-based services data for urban activity
recognition [26, 27].

Related in terms of data sources, let us also mention efforts to mine spatial trajectories
of taxi mobility in the field of urban computing [6—8]. The dataset of Yellow Cabs studied
in the present work has been exploited recently to quantify the benefits of vehicle pooling
in urban environments [28]. To the best of our knowledge, however, a combination of
mobility data with financial information, as considered here, is novel, as is the idea to
develop data mining solutions for transparency in urban taxi transport. Our hope is that
similar works will follow as more and more datasets become available, with a potential
benefit not only to urban transport, but also in the field of spatial economics in general
[29, 30]. In this direction, data mining techniques have recently been applied to identify
ideal locations to set up new retail facilities in cities [31].

7 Conclusion and future work
The findings of the present work have great implications both for the future of urban trans-
port, but also for data mining research.

First, as new technologies disrupt traditionally established sectors new norms are likely
to emerge. As we have seen the case of Uber has dramatically altered the economic land-
scape of transport by taxi. While our work has focused on the example case of New York,
similar trends are being observed in other metropolitan environments where Uber like
services launch. Regarding this evolution, in Section 2, we have demonstrated how mod-
ern open datasets that describe urban transport can help towards a more transparent eco-
nomic reality in a sector that now experiences massive changes. Moreover, these datasets
can be exploited by mobile applications (Section 3) that have the potential to reach thou-
sands of users and help obtain significant savings during their daily commutes as we have
shown in Section 4.

Secondly, we have seen that it is possible to exploit observed data in order to reverse
engineer, to some extent, the functionality of complex algorithms that are deployed in the
real world by technology companies. As these disruptions continue so does the need for
work in the emerging field of algorithmic transparency [32] emerges. Having focused on
Uber’s popular surge pricing methods, we have shown it presents tractable characteristics
which are mainly sourced in local demand patterns posed by mobile users. Interestingly,
as we have shown in Section 5, it is possible to estimate average demand at an area, and
therefore surge, using exogenous to Uber data. The geographic characterization of surge
we have performed can be incorporated in our application, or similar ones, to improve
user experience and help them save more. For example, consultation on how long they
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need to wait, or which block they need to walk into for calling a taxi, could help them
avoid surge pricing.

Overall, we believe that these observations can inspire novel work in the field of data
mining. The idea of incorporating datasets from multiple services (Uber, Foursquare, Yel-
low Cabs) for innovative applications as we have done in the present work corresponds
to a new frontier in the areas of big data mining and machine learning. Further, while we
have performed a geographic prediction of surge, new approaches could be developed that
identify the evolution of surge dynamically over time. In this context, the development of
algorithms and models that realize the spatio-temporal dynamics of complex urban sys-
tems using modern datasets from multiple location-based services or transport systems
could be an interesting future direction to consider. Finally, in the prospect of more sophis-
ticated evaluations of the taxi transport industry, in addition to pricing, other dimensions
of the service such as overall quality of the experience, including pick up times, support
for the disabled, driver politeness or cleanliness could be incorporated in future analyses.
Survey based methods on users could be a proxy for the acquirement of appropriate kind

of data in this context.

8 Accessing the Data

The yellow taxi dataset used in the paper is openly available on the links provided in the
previous versions. The Uber API is accessible in line with the company policies. Finally,
due to ethics and privacy constraints designated with appropriate agreements put in place
when the app was made available, user data about OpenStreetCab cannot become avail-
able.
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Endnotes
a

vvvvw.openstreetcab,com.

b Uber minimum fare New York City, https://www.uber.com/cities/new-york.

Yellow Cab pricing information, http://www.nyc.gov/html/tlc/downloads/pdf/taxi_information.pdf.
A taxi medalion (license) for the company costs 805K U.S. Dollars as of 2015.
Uber states it is Better, faster, and cheaper than a taxi in www.uber.com.
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